0x01 LM Hash & NTLM Hash
windows内部是不保存明文密码的,只保存密码的hash。
其中本机用户的密码hash是放在 本地的SAM
文件 里面,域内用户的密码hash是存在域控的NTDS.DIT
文件里面
在Windows系统导出密码的时候,经常看到这样的密码格式
Administrator:500:AAD3B435B51404EEAAD3B435B51404EE:31D6CFE0D16AE931B73C59D7E0C089C0:::
其中的AAD3B435B51404EEAAD3B435B51404EE
是LM Hash
31D6CFE0D16AE931B73C59D7E0C089C0
是NTLM Hash
1. LM Hash
全称是LAN Manager Hash, windows最早用的加密算法,由IBM设计。
LM Hash的计算:
- 用户的密码转换为大写,密码转换为16进制字符串,不足14字节将会用0来再后面补全。
- 密码的16进制字符串被分成两个7byte部分。每部分转换成比特流,并且长度位56bit,长度不足使用0在左边补齐长度
- 再分7bit为一组,每组末尾加0,再组成一组
- 上步骤得到的二组,分别作为key 为
KGS!@#$%
进行DES加密。 - 将加密后的两组拼接在一起,得到最终LM HASH值。
#coding=utf-8
import re
import binascii
from pyDes import *
def DesEncrypt(str, Des_Key):
k = des(binascii.a2b_hex(Des_Key), ECB, pad=None)
EncryptStr = k.encrypt(str)
return binascii.b2a_hex(EncryptStr)
def group_just(length,text):
# text 00110001001100100011001100110100001101010011011000000000
text_area = re.findall(r'.{%d}' % int(length), text) # ['0011000', '1001100', '1000110', '0110011', '0100001', '1010100', '1101100', '0000000']
text_area_padding = [i + '0' for i in text_area] #['00110000', '10011000', '10001100', '01100110', '01000010', '10101000', '11011000', '00000000']
hex_str = ''.join(text_area_padding) # 0011000010011000100011000110011001000010101010001101100000000000
hex_int = hex(int(hex_str, 2))[2:].rstrip("L") #30988c6642a8d800
if hex_int == '0':
hex_int = '0000000000000000'
return hex_int
def lm_hash(password):
# 1. 用户的密码转换为大写,密码转换为16进制字符串,不足14字节将会用0来再后面补全。
pass_hex = password.upper().encode("hex").ljust(28,'0') #3132333435360000000000000000
print(pass_hex)
# 2. 密码的16进制字符串被分成两个7byte部分。每部分转换成比特流,并且长度位56bit,长度不足使用0在左边补齐长度
left_str = pass_hex[:14] #31323334353600
right_str = pass_hex[14:] #00000000000000
left_stream = bin(int(left_str, 16)).lstrip('0b').rjust(56, '0') # 00110001001100100011001100110100001101010011011000000000
right_stream = bin(int(right_str, 16)).lstrip('0b').rjust(56, '0') # 00000000000000000000000000000000000000000000000000000000
# 3. 再分7bit为一组,每组末尾加0,再组成一组
left_stream = group_just(7,left_stream) # 30988c6642a8d800
right_stream = group_just(7,right_stream) # 0000000000000000
# 4. 上步骤得到的二组,分别作为key 为 "KGS!@#$%"进行DES加密。
left_lm = DesEncrypt('KGS!@#$%',left_stream) #44efce164ab921ca
right_lm = DesEncrypt('KGS!@#$%',right_stream) # aad3b435b51404ee
# 5. 将加密后的两组拼接在一起,得到最终LM HASH值。
return left_lm + right_lm
if __name__ == '__main__':
hash = lm_hash("123456")
LM加密算法存在一些固有的漏洞
- 首先,密码长度最大只能为14个字符
- 密码不区分大小写。在生成哈希值之前,所有密码都将转换为大写
- 查看我们的加密过程,就可以看到使用的是分组的DES,如果密码强度是小于7位,那么第二个分组加密后的结果肯定是aad3b435b51404ee,如果我们看到lm hash的结尾是aad3b435b51404ee,就可以很轻易的发现密码强度少于7位
- 一个14个字符的密码分成7 + 7个字符,并且分别为这两个半部分计算哈希值。这种计算哈希值的方式使破解难度成倍增加,因为攻击者需要将7个字符(而不是14个字符)强制暴力破解。这使得14个字符的密码的有效强度等于,或者是7个字符的密码的两倍,该密码的复杂度明显低于14个字符的密码的理论强度。
- Des密码强度不高
2. NTLM Hash
为了解决LM加密和身份验证方案中固有的安全弱点,Microsoft 于1993年在Windows NT 3.1中引入了NTLM协议。下面是各个版本对LM和NTLM的支持。
其中
也就是说从Windows Vista 和 Windows Server 2008开始,默认情况下只存储NTLM Hash,LM Hash将不再存在。(因此后面我们介绍身份认证的时候只介绍Net-ntlm,不再介绍net-lm)如果空密码或者不储蓄LM Hash的话,我们抓到的LM Hash是AAD3B435B51404EEAAD3B435B51404EE。
所以在win7 中我们看到抓到LM Hash都是AAD3B435B51404EEAAD3B435B51404EE,这里的LM Hash并没有价值。
但某些工具的参数需要填写固定格式LM hash:NT hash,可以将LM hash填0(LM hash可以为任意值),即00000000000000000000000000000000:NT hash。
接下来讲下NTLM Hash的计算
1.先将用户密码转换为十六进制格式。
2.将十六进制格式的密码进行Unicode编码。
3.使用MD4摘要算法对Unicode编码数据进行Hash计算
python2 -c 'import hashlib,binascii; print binascii.hexlify(hashlib.new("md4", "p@Assword!123".encode("utf-16le")).digest())'
0x02 NTLM身份验证
NTLM验证是一种Challenge/Response 验证机制,由三种消息组成:通常称为type 1(协商),类型type 2(质询)和type 3(身份验证)。
它基本上是这样工作的:
- 用户登录客户端电脑
- (type 1)客户端向服务器发送type 1(协商)消息,它主要包含客户端支持和服务器请求的功能列表。
- (type 2)服务器用type 2消息(质询)进行响应,这包含服务器支持和同意的功能列表。但是,最重要的是,它包含服务器产生的Challenge。NTLMv2协议下会生成一个16位的随机数(这个随机数称为Challenge),使用存储的登录用户名密码hash加密Challenge,获得challenge1
- (type 3)客户端用type 3消息(身份验证)回复质询。用户接收到步骤3中的challenge之后,使用用户hash与challenge进行加密运算得到response,将response,username,challenge发给服务器。消息中的response是最关键的部分,因为它们向服务器证明客户端用户已经知道帐户密码。
- 服务器拿到type 3之后比较比较response和Challenge1,如果相同,验证成功
如果是在域环境的话,用户的hash是存在域控的NTDS.dit
,服务器拿到客户端发的response(使用用户的hash和challenge加密得到)后,自己本地没有用户hash,所以这时候服务器端就会通过Netlogon协议联系域控,建立一个安全通道,然后将type 1,type 2,type3 全部发给域控(这个过程也叫作Pass Through Authentication认证流程),域控使用challenge和用户hash进行加密得到response2,与type 3的response进行比较。
0x03 Net-ntlm hash
在type3中的响应,有六种类型的响应
- LM(LAN Manager)响应 – 由大多数较早的客户端发送,这是“原始”响应类型。
- NTLM v1响应 – 这是由基于NT的客户端发送的,包括Windows 2000和XP。
- NTLMv2响应 – 在Windows NT Service Pack 4中引入的一种较新的响应类型。它替换启用了 NTLM版本2的系统上的NTLM响应。
- LMv2响应 – 替代NTLM版本2系统上的LM响应。
- NTLM2会话响应 – 用于在没有NTLMv2身份验证的情况下协商NTLM2会话安全性时,此方案会更改LM NTLM响应的语义。
- 匿名响应 – 当匿名上下文正在建立时使用; 没有提供实际的证书,也没有真正的身份验证。“存 根”字段显示在类型3消息中。
这六种使用的加密流程一样,都是前面我们说的Challenge/Response 验证机制,区别在Challenge和加密算法不同。
Net-NTLM Hash可以用作中间人攻击,NTLMv1/v2 Hash可以用作pth
0x04 SSP & SSPI
- SSPI(Security Support Provider Interface)
这是 Windows 定义的一套接口,此接口定义了与安全有关的功能函数, 用来获得验证、信息完整性、信息隐私等安全功能,就是定义了一套接口函数用来身份验证,签名等,但是没有具体的实现。
- SSP(Security Support Provider)
SSPI 的实现者,对SSPI相关功能函数的具体实现。微软自己实现了如下的 SSP,用于提供安全功能:
- NTLM SSP
- Kerberos
- Cred SSP
- Digest SSP
- Negotiate SSP
- Schannel SSP
- Negotiate Extensions SSP
- PKU2U SSP
在系统层面,SSP就是一个dll,来实现身份验证等安全功能,实现的身份验证机制是不一样的。比如 NTLM SSP 实现的就是一种 Challenge/Response 验证机制。而 Kerberos 实现的就是基于 ticket 的身份验证机制。我们可以编写自己的 SSP,然后注册到操作系统中,让操作系统支持更多的自定义的身份验证方法。
这个地方可以用于留作后门。
抓包分析的时候会发现,NTLM相关的东西是放在GSS-API里面。
通用安全服务应用程序接口(GSSAPI)·
是为了让程序能够访问安全服务的一个应用程序接口。他是一个通用的安全接口,程序员不必关心各种平台,各种保护网络数据方面的各种细节。
SSPI是GSSAPI的一个专有变体,进行了扩展并具有许多特定于Windows的数据类型。
SSPI生成和接受的令牌大多与GSS-API兼容。所以这里出现GSSAPI只是为了兼容,我们可以不必理会。
可以直接从NTLM SSP开始看起。注册为SSP的一个好处就是,SSP实现了了与安全有关的功能函数,那上层协议(比如SMB)在进行身份认证等功能的时候,就可以不用考虑协议细节,只需要调用相关的函数即可。
而认证过程中的流量嵌入在上层协议里面。不像kerbreos,既可以镶嵌在上层协议里面,也可以作为独立的应用层协议。ntlm是只能镶嵌在上层协议里面,消息的传输依赖于使用ntlm的上层协议。比如镶嵌在SMB协议里面是这样。
镶嵌在HTTP协议里面是这样:
0x05 LmCompatibilityLevel
此安全设置确定网络登录使用的质询/响应身份验证协议。此选项会影响客户端使用的身份验证协议的等级、协商的会话安全的等级以及服务器接受的身份验证的等级,其设置值如下:
发送 LM NTLM 响应
: 客户端使用 LM 和 NTLM 身份验证,而决不会使用 NTLMv2 会话安全;域控制器接受 LM、NTLM 和 NTLMv2 身份验证。发送 LM & NTLM – 如果协商一致,则使用 NTLMv2 会话安全
: 客户端使用 LM 和 NTLM 身份验证,并且在服务器支持时使用 NTLMv2 会话安全;域控制器接受 LM、NTLM 和 NTLMv2 身份验证。仅发送 NTLM 响应
: 客户端仅使用 NTLM 身份验证,并且在服务器支持时使用 NTLMv2 会话安全;域控制器接受 LM、NTLM 和 NTLMv2 身份验证。仅发送 NTLMv2 响应
: 客户端仅使用 NTLMv2 身份验证,并且在服务器支持时使用 NTLMv2 会话安全;域控制器接受 LM、NTLM 和 NTLMv2 身份验证。仅发送 NTLMv2 响应\拒绝 LM
: 客户端仅使用 NTLMv2 身份验证,并且在服务器支持时使用 NTLMv2 会话安全;域控制器拒绝 LM (仅接受 NTLM 和 NTLMv2 身份验证)。仅发送 NTLMv2 响应\拒绝 LM & NTLM
: 客户端仅使用 NTLMv2 身份验证,并且在服务器支持时使用 NTLMv2 会话安全;域控制器拒绝 LM 和 NTLM (仅接受 NTLMv2 身份验证)。
默认值:
Windows 2000 以及 Windows XP
: 发送 LM & NTLM 响应Windows Server 2003
: 仅发送 NTLM 响应Windows Vista、Windows Server 2008、Windows 7 以及 Windows Server 2008 R2及以上
: 仅发送 NTLMv2 响应
0x06 相关的安全问题
1. pass the hash
2.NTML Relay
进行中继前提:目标SMB签名需要关闭,在SMB连接中,需要使用安全机制来保护服务器和客户端之间传输数据的完整性,而这种安全机制就是SMB签名和加密,如果关闭SMB签名,会允许攻击者拦截认证过程,并且将获得hash在其他机器上进行重放,从而获得权限。